- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0002000002000000
- More
- Availability
-
40
- Author / Contributor
- Filter by Author / Creator
-
-
Comer, Mary (3)
-
Aguilar, Camilo (2)
-
Li, Tianyu (2)
-
Aguilar, Camilo G. (1)
-
Agyei, Ronald (1)
-
Agyei, Ronald F. (1)
-
Comer, Mary L. (1)
-
Hanhan, Imad (1)
-
Hanhan, Imad A. (1)
-
Sangid, Michael (1)
-
Sangid, Michael D. (1)
-
Zerubia, Josiane (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
null (Ed.)Material and biological sciences frequently generate large amounts of microscope data that require 3D object level segmentation. Often, the objects of interest have a common geometry, for example spherical, ellipsoidal, or cylindrical shapes. Neural networks have became a popular approach for object detection but they are often limited by their training dataset and have difficulties adapting to new data. In this paper, we propose a volumetric object detection approach for microscopy volumes comprised of fibrous structures by using deep centroid regression and geometric regularization. To this end, we train encoder-decoder networks for segmentation and centroid regression. We use the regression information combined with prior system knowledge to propose cylindrical objects and enforce geometric regularization in the segmentation. We train our networks on synthetic data and then test the trained networks in several experimental datasets. Our approach shows competitive results against other 3D segmentation methods when tested on the synthetic data and outperforms those other methods across different datasets.more » « less
-
Li, Tianyu; Comer, Mary; Zerubia, Josiane (, 2018 25th IEEE International Conference on Image Processing (ICIP))
-
Aguilar, Camilo; Comer, Mary (, Electronic Imaging)
An official website of the United States government

Full Text Available